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Abstract:  

The room temperature liquid metal is quickly emerging as an important 

functional material in a variety of areas like chip cooling, 3D printing or printed 

electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, 

such fluid owns many intriguing properties that had never been anticipated before. 

Here, we show a group of unconventional phenomena occurring on the liquid metal 

objects. Through applying electrical field on the liquid metals immersed in water, a 

series of complex transformation behaviors such as self-assembling of a sheet of 

liquid metal film into a single sphere, quick mergences of separate metal droplets, 

controlled self-rotation and planar locomotion of liquid metal objects can be realized. 

Meanwhile, it was also found that two accompanying water vortexes were induced 

and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, 

size, voltage, orientation and geometries of the electrodes to control the liquid metal 

transformers were clarified. Such events are hard to achieve otherwise on rigid metal 

or conventional liquid spheres. This finding has both fundamental and practical 

significances which suggest a generalized way of making smart soft machine, 

collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects 

including accompanying devices. 
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1. Introduction 

In nature, designing objects that can flexibly transform between different 

configurations and freely move via a controllable way to perform desired tasks has 

long been a dream among diverse scientific and technological areas ranging from 

biology to physics. Tremendous efforts have therefore been made to explore the 

motion of artificial swimmers [1], through strategies like electrodeposition [2] or 

electropolymerization to grow random [3] or directional [4] structures of conducting 

material between two electrodes. To avoid use of the chemical fuel, alternative driving 

approaches were also tried, such as light [5], ultrasonic propulsion [6], magnetic force 

[7], biomimetic propulsion [8] as well as electricity [9] etc. Among the many typical 

methods, electric field-driving is especially convenient for practical purpose. In this 

side, electrokinetic effects have been found to occur on particles when exposed to an 

electric field which have also been adopted to manipulate target objects [10]. 

Generally, if an electric field applies on an interface separating two immiscible liquids, 

it would undergo a jump due to transition of physical properties from one medium to 

another. One consequence of such field discontinuity is the presence of an electric 

stress at the interface. In the case of a suspended droplet placed in an otherwise 

uniform electric field, the curvature of the interface usually creates surface gradients 

of electric field and stress that are likely to deform the droplet. However, so far, most 

of the conductive droplets ever tested still fall in the category of a conventional liquid. 

Recently, the room temperature liquid metals were found to have unique virtues 

in a wide variety of important areas such as chip cooling, 3D printing or printed 

electronics due to owing outstanding diverse physical capabilities, such as high 

conductivity as well as easy mobility etc. Mercury is a well-known room temperature 

liquid metal. Unfortunately, its toxicity poses a serious safety concern for the 

widespread applications. As an alternative, a class of room temperature liquid metal 

and its alloys were found to own very interesting property that may be advantageous 

as materials that are movable in a controllable way [11]. Such liquid metal has a broad 

temperature range of liquid phase with a melting point at 10.35°C. And they are 
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generally chemically stable and do not react with water at around room temperature. A 

series of previous studies have proven that such alloy is safe for humans in many 

normal occasions. Particularly, the high conductivity of the alloy is up to 3.1*10
6
 Sm

-1 

[12], which is several orders higher in magnitude than that of non-metallic materials 

and comparable with many other common metallic materials. Therefore, the liquid 

metal spheres or other manifestations formed in water can naturally function as active 

electronic junctions. With such intrinsically existing conductive liquid metal 

immersed in water, it is expected to achieve various electrically controlled behaviors 

which had never been observed before. Through years’ continuous working on liquid 

metal, here we occasionally found a group of unconventional transformation 

phenomena thus happen which may have generalized importance either for 

fundamental science or application purpose. It was demonstrated that when applying 

electricity on the target liquid metal GaInSn alloy immersed in water, a series of 

transformation behaviors such as self-assembling of a sheet of liquid metal film into a 

single sphere, automatic mergences of any contacting liquid metal droplets, planar 

locomotion and rotation of the liquid metal can be easily realized. Meanwhile, we also 

found that the rotation of the metal sphere would induce accompanying vortexes in 

the surrounding water. The reliable running of the liquid metal transformers suggests 

that it is very practical to make a soft machine along this way in the near future. 

 

2. Materials and Methods 

The present experiments on the electrically controlled liquid metal 

transformation phenomena were carried out on the GaInSn alloy in water. GaInSn 

alloy was prepared from gallium, indium and tin metals with purity of 99.99 percent. 

Such raw materials with a volume ratio of 67:20.5:12.5 were added into the beaker 

and heated at 100°C. Then a magnetic stirrer was utilized to stir the mixture after they 

were all melted to achieve uniform mixing. The experiments were performed using a 

setup consisting of Petri dish, GaInSn alloy, electric cords with copper wire and 

power supply, respectively. All equipment is presented in Figure 1(a-e) and the 
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apparatus is assembled as shown in Figure 1(f). Alternatively, a high-speed camera 

Canon XF305 was adopted for shooting the experimental phenomena. 

 

 

Figure 1| Equipment and experimental diagram on testing liquid metal 

transformation phenomena. (a) Water and Petri dish. (b) A sheet of liquid 

metal splashed in water. (c) Electric cords with copper wire. (d) Power supply. 

(e) Liquid metal spheres in water with electric cords. (f) Close-up of the 

apparatus with camera. 

 

3. Experimental Results 

3.1 Transformation and mergence of liquid metal objects  

Following the procedures as outlined in Figure 2a, a drop of liquid metal was 

added onto the surface of the plastic base to form a flat oval which is about 2 cm in its 

long axis (Figure 2b). Then the same amount of water was dropped on the liquid 

metal to contain it inside. The anode of the copper wire was immersed in water, and 

the cathode of the copper wire was attached to the liquid metal. If switching on the 

electricity, the shape of the liquid metal would quickly transform from its original 

flattened configuration into a spherical one (Figure 2b), indicating significant 

variations of the interfacial tension applied on the liquid metal. Here direct current 

was applied with a voltage set as 12V. For a much larger sheet of liquid metal film 

covering the whole dish, similar phenomena were also observed. Typical sequences 
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for this kind of liquid metal transformation are shown in Figure 2c.  

 

 

Figure 2| The electric field-induced transformation of liquid metal objects 

in water. (a) Schematic for electric field-induced transformation from a pool of 

liquid metal into a sphere. (b) Liquid metal shape transformation from original 

flattened state 1 to intermediate states 2 and 3 until finally spherical shape 4. 

(c) Sequential transformation for a circular sheet of liquid metal film to change 

from its initial flattened state 1 to intermediate states 2 and 3 until finally 

spherical shape 4, the original area of liquid metal film is 3848mm2, while the 

thickness for liquid metal and water layers is 0.047mm and 0.1mm, 

respectively. (d) Schematic for electric field-induced mergence from two 

separate spheres into a single one. (e) Two separate droplets combining into a 

fused sphere from state 1 to 4 when put to contact together. (f) The transient 

area variation for liquid metal film to change from its original flattened shape 

into a sphere. 

 

According to several former theoretical predictions [13], it can be understood 

that the liquid metal object in water structural form is mainly dominated by the 
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surface tension. Such effect would exhibit a number of unique properties, including 

very small contact area with surrounding surfaces leading to low friction rolling, 

super-hydrophobic interactions with other fluids and the ability to be split or fused 

together with self-healing encapsulation layers. With such effect in mind, our 

additional experiments further discovered that splited liquid metals could be easily 

collected through simply applying electricity on them (Figure 2d). To test the ability 

to merge different liquid metal objects in the glass dish, we placed two dispersed 

liquid metal objects in close proximity and slightly contact them together. Then a 

quick mergence between the metal droplets happens. Figure 2e presents the original 

separate droplets, the application of a spatula to contact them together, and the 

resulting fused sphere. Clearly, the final sphere was relatively large and appears quite 

spherical in shape.  

For more specific information on the transient liquid metal shape transformation, 

a quantitative analysis was performed on Figure 2c, where the original area of liquid 

metal shape is 3848mm2, and the thickness for the liquid metal or water layers is 

0.047mm and 0.1mm respectively. The result is depicted in Figure 2f. It can be 

noticed that, the total time for the liquid metal film in Figure 2c to finish its 

transformation from the initial flattened circular shape into a sphere is about 10s. 

When this liquid metal sphere was cut apart using a fine copper wire, it would split 

into two small spheres and remain spherical in shape. Such mechanism offers an 

extremely useful way towards making soft transformers and also for future liquid 

metal recycling. 

 

3.2 Rotation of liquid metal sphere and its induced water vortexes 

Except for the above electricity induced configuration transformations, additional 

unconventional phenomena were also found to happen on the present two-fluid 

system made of liquid metal and water. To test the effect, the liquid metal droplet was 

immersed in the water. Then two electrodes were placed at the relative positions as 

shown in Figure 3a. When switching on the electricity, an automatic rotation of the 

liquid metal sphere was observed (Figure 3b). Meanwhile, it was also found that there 
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simultaneously occurred two accompanying vortexes in the nearby water, which kept 

swirling at the cathode side. Here the arrows on the picture indicate direction of the 

vortex motion in the water. The swirling of the water vortexes near the liquid metal 

sphere can be visualized by using suspension particles generated in advance through 

electrolytic effect on the electrode (Figure 3c). Clearly, the rapid rotation of both 

liquid metal sphere and water vortexes runs rather reliably. Such behavior is hard to 

achieve otherwise for a rigid metal or conventional conductive sphere especially when 

no magnetic fields were involved. If changing the relative orientations of the two 

electrodes, similar phenomena were also observed. Plots of gray scale along the 

horizontal lines at the middle height of swirls labeled as a1 and b1 in Figure 3c were 

presented in Figure 3d. The symmetrical curve in gray scale indicates existence of the 

two swirls at a1 and b1. The reasons for causing these abnormal fluidic behaviors can 

all be attributed to the liquid metal’s diverse properties like highly conductive 

however flowable features. Overall, the convective motions were driven by the 

interfacial tension gradients of the liquid metal sphere.  

 

 

Figure 3| The electric field-induced rotation of liquid metal sphere and 

accompanying vortexes in water. (a) Schematic for electric field-induced 
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rotation. (b) Liquid metal sphere rotation and its induced accompanying 

vortexes in water, where yellow arrows indicate direction of the swirls close to 

the cathode. (c) Another two cases of liquid metal sphere rotation and vortexes 

in water, where the swirling of the water near the liquid metal electrode could 

be visualized by using suspension solid particles there. (d) Plots of gray scale 

along the horizontal line at the middle height of the swirls labeled as a1 and b1 

in Figure 3c, the symmetrical curves of the gray scale indicate existence the 

two swirls. 

 

3.3 Planar locomotion of liquid metal objects 

Through a series of conceptual experiments, we further clarified that nearly 

every kind of complex flow behavior can be induced on the liquid metal object. 

Specifically, an electrically controlled directional locomotion for the liquid metal 

sphere can be realized. For this purpose, a liquid metal sphere was immersed in a 

water channel pre-made on the plastic plate. The electric field was imposed by 

applying a 12 V DC between two electric cords which were vertically placed and 

separated by about 8 cm (Figure 4a). The DC voltages are generated by a signal 

generator. When the electricity was switched on, several forces were induced as 

depicted by Figure 4b and their imbalance resulted in a directional locomotion, as 

sequentially shown in Figure 4c. The driving forces included the surface tension 

gradient force induced by the electric field and the rotational force for water. To 

achieve a directional or reciprocal motion, these forces overcame the retardation 

effects including the viscous friction between the droplet and its surrounding 

electrolyte as well as the frictional force between the droplet and the surface of the 

substrate, resulting in droplet locomotion. The liquid metal sphere moved in an 

accelerated way towards the anode with an average speed of approximately 6 body 

length. A quantification on the transient locomotion of two different sized liquid metal 

droplets was shown in Figure 4d. Clearly, the larger diameter for the droplet, the 

quicker it moves. It is worth to note that no movement was observed when the applied 

voltage was lower than 12 V under current experimental conditions. The present study 
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adds new findings to the former locomotion phenomenon as observed before on some 

conductive objects especially liquid marble coated with nanoparticles on the sphere 

surfaces [14-16]. In the electrochemically induced interesting chemical locomotion 

[16], although a planar movement of the conducting objects could be induced therein, 

the motion speed is still somewhat slow and the material is not as common as 

identified in the present study.  

 

 

Figure 4| Planar locomotion of liquid metal sphere induced by electric 

field. (a) The diagram of electric field-induced planar locomotion. (b) 

Schematic of showing the forces affecting the motion of a liquid metal sphere 

in water induced by electric field. (c) The photograph of liquid metal sphere 

motion in water, sequential snapshots for liquid metal sphere moving in water 

when a DC voltage of 12V was applied. (d) The transient locomotion distance 

for two different sized liquid metal droplets. 

 

4. Discussion 

Overall, the most important fundamental discovery as achieved by the present 

work is that nearly every kind of transformation behaviors can be realized on the 

liquid metal objects. It opens a generalized way to make smart liquid machine. With 
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easily controllable feature, such artificial transformer is expected to offer plenty of 

practical opportunities in the coming time. It is worth to mention that all such 

transformations were enabled by only very low electrical voltage. Therefore the scope 

of the applications thus involved can be extensive. Further, liquid metal and water are 

two materials quite common in nature. And the liquid metal alloy is safe for humans 

in normal occasions, owing to their excellent biological compatibility [17]. As a result, 

encapsulating them together with elastic materials may create potential to serve as 

artificial machine. A soft robot can thus be made from such liquid metal transformers. 

Meanwhile, it also posed promising prospects in the motion needed devices that can 

be implanted in human body. 

Further, the choice of different forms of electrical fields allows occurrence of a 

variety of phenomena that are worthy of study. For example, a number of electrodes 

can be aligned in parallel, while the water and liquid metal can be packaged in 

earthworm-shaped structures. When the square wave voltage signal was applied, an 

earthworm-like soft robot might be driven to move. The materials as adopted in this 

work are moldable and flexible, and the fabrication process is simple. They are 

compatible with water-based or high humidity environments. Since biological systems 

generally have soft, curved and in some cases moving surfaces and tend to be 

operated by electronic current, the present soft, electronic current controlled mergence 

may find potential applications in recycling the liquid metal residues injected into 

biological body as medical electronics [17], soft-matter diodes with liquid metal 

electrodes [18], bio-embeddable smart particles and biomimetic devices. We 

attributed the mechanisms to cause such liquid metal transformations to the dynamic 

balance between the surface tension and the electronic force applied on the liquid 

metal surface. The present behavior belongs to certain kind of self-organization on 

macroscopic scale. Whether such mechanism can make expected transformation into 

cooperating rolls or cells in micro scale deserves further study.  
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5. Conclusion 

In summary, electric field induced transformations of liquid metal in different 

styles were discovered. Along with rotation of the liquid metal sphere, accompanying 

water vortexes were also induced which run reliably. Owing to the diverse capabilities 

of the liquid metals in underwater electric field, it opens important opportunities for 

the practices of liquid metal recycling, soft machine manufacture, locomotion control 

of objects as well as moveable sensors, microfluidic valve, pump or more artificial 

robots. Such liquid metal transformers and locomotors could provide on demand use 

given specific designing. Importantly, a smart liquid metal machine could be extended 

to three dimensions when a spatial electrode configuration is adopted. Further, the 

phenomena of those complex transformation behaviors without gravity effect are also 

worth of pursuing in the near future. 
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